
Automatic molecular design using evolutionary

techniques

AI Globus, MRJ Technology Solutions, Inc. at NASA Ames Research Center

John Lawton, University of California at Santa Cruz

Todd Wipke, University of California at Santa Cruz

Abstract

Molecular nanotechnology is the precise, three-dimensional control of materials and devices at the

atomic scale. An important part of nanotechnology is the design of molecules t_r specific purposes. This

paper describes early results using genetic software techniques to automaticail_design molecules under
/

the control of a fitness function. The fitness function must be capable of deterr,_ining which of two

arbitrary molecules is better for a specific task. The software begins by gene_iating a population of

random molecules. The population is then evolved towards greater fitness by randomly combining parts

of the better individuals to create new molecules. These new molecules then replace some of the worst

molecules in the population. The unique aspect of our approach is that we apply genetic crossover to

molecules represented by graphs, i.e., sets of atoms and the bonds that connect them. We present

evidence suggesting that crossover alone, operating on graphs, can evolve any possible molecule given

an appropriate fitness function and a population containing both rings and chains. Prior work evolved

strings or trees that were subsequently processed to generate molecular graphs. In principle, genetic

graph software should be able to evolve other graph representable systems such as circuits,

transportation networks, metabolic pathways, computer networks, etc.

Introduction

Hypothesis

Crossover alone, operating on graphs, can evolve any possible molecule given an appropriate fitness

function and a population containing both rings and chains. This hypothesis is supported but not proven.

Design problem

Many problems associated with the development of nanotechnology require custom designed molecules.

Frequently it is possible to precisely define what a molecule must do and still have significant problems

designing a molecule to do the task. Therefore, a design technique that can automatically generate

candidate molecules given requirements may be useful. Genetic algorithms [Holland 75], genetic

programming [Koza 92] and genetic graphs can automatically generate solutions to problems given a

function that determines which of two candidate solutions is better. Genetic algorithms evolve strings.

Genetic programming evolves tree-structured programs. Genetic graphs, described here for the first time

(to our knowledge), evolves graphs. There are several classes of molecular nanotechnology designs that

can be described as graphs; i.e., a set of vertices and a set of edges each of which connects two vertices.

Molecules can be described as a set of atoms (vertices) connected by a set of bonds (edges). Analog

circuits can be described as a set of vertices (nodes) connected by a set of wires or components (edges).

Digital circuits and, presumably, future nanoelectronic circuits can be similarly described. An automated



systemfor designinggraphswith desirablepropertiesshouldthereforebeable,at leastin principle,to
designavarietyof molecularnanotechnologysystems.In thispaperwe focuson thedesignof small
molecules;in particular,pharmaceuticaldrugs.

Althoughdrugdesignis not usuallyconsideredmolecularnanotechnology,this is amisconceptionthat
presumablystartedbecausetheearliestnanotechnologywork focusedonsystemsanalogousto
macroscopicmachines.Drugsarefrequentlysmall moleculesthatpreciselyfit into receptorsitesto
block molecularprocessesin thebody.This mustbeaccomplishedwithout fitting thereceptorsitesof
thebody?shealthymolecularmachinery.Furthermore,drugmoleculesmustsurvivein thebodylong
enoughto beeffective.Earlydrugdiscoverywasaccomplishedwithout understandingthese
mechanisms,but moderndrugdesignconsciouslycreatesmoleculeswith atomicprecisionto bind well
to receptorsitesin diseaseorganismproteins.This is precise,three-dimensionalcontrolof biological

devices;i.e.,molecularnanotech_ology.
l

Oneapproachto drugdesignis t_ find moleculessimilar to gooddrugsthathavenegativesideeffects.
Ideally, acandidatereplacement_lrugis sufficiently similar to havethesamebeneficialeffectbut is
differentenoughto avoidthesitteeffects.In anycase,to usegeneticgraphsfor similarity-baseddrug
discoveryweneedagoodsimilarity measurethatcanscoreanymolecule.[Carhart85] definedsucha
similarity measure,all-atom-pairs-shortest-path,andsearchedalargemoleculardatabasefor molecules
similar to diazepam.We useacloselyrelatedsimilarity measure.

Genetic software techniques

For an excellent review of genetic software techniques as of spring 1997 see [Baeck 97]. Genetic

software techniques seek to mimic natural evolution's ability to produce highly functional objects.

Biology produces organisms. Genetic software produces sets of parameters, programs, molecular

designs, and many other structures. Genetic software solves problems by:

1. Randomly generating a population of individual potential solutions.

2. For each new generation, repeatedly selecting parent individuals at random with a bias towards

better individuals and applying one of the following transmission operators:

I.

1. Crossover: each of two parents is divided into two parts and one part from each parent is
combined into a child.

2. Mutation: a single ?parent? is randomly modified to create a child.

3. Reproduction: a single ?parent? is copied into the new generation.

Continuing until an acceptable solution is found or for a certain number of generations.

Genetic software techniques differ in the representation of solutions. Genetic algorithms use strings of

symbols for the representation. The crossover operator breaks strings in half, usually at a random point.

Bit strings are a common representation, but arrays of floating point numbers, special symbols that

generate circuits [Lohn 98], robot commands [Xiao 97], and many other symbols may be found in the

literature. Strings may be of fixed or variable length.

Genetic programming [Koza 92] uses trees to represent individuals. This is particularly useful for

representing computer programs. For example, a tree node representing assignment has two child-nodes,

one representing a variable and the other representing a value. The crossover operator exchanges

randomly selected sub-trees between two parent-trees. Trees may be viewed as graphs without cycles.



Manymoleculescontaincycles,whichchemistscall rings.Therefore,anyattemptto usegenetic
programmingto designmoleculesmusthaveamechanismto evolvecycles.This is non-trivial when
crossovercanreplaceanysub-treewith someotherrandomsub-tree.After muchthoughtwewere
unableto deviseacrossover-friendlytreerepresentationof arbitrarycyclic graphs.Crossover-friendly
meansthatanysub-treeis apotentialcrossoverpoint without restriction.

[Nachbar98] usedgeneticprogrammingto evolvemoleculesfor drugdesignby sidesteppingthe
crossover/cyclesproblem.Eachtreenoderepresentsanatomwith abondto theparent-nodeatomand
eachchild-nodeatom.Hydrogenatomsareexplicitly representedandarealwaysleafnodes.Ringsare
representedby numberingcertainatomsandallowing areferenceto thatnumberto bealeafnode.
Crossoveris constrained not to break or form rings. Ringevolutionis theoreticallypermittedby
specificring openingandclosingmutationoperators,but theonly exampleproblemsolvedin [Nachbar
98] did not involveanymoleculeswith rings.

Method )

Genetic Graphs

Genetic graphs uses cyclic graphs to represent molecules. Vertices are typed by atomic elements. Edges

can be single, double, or triple bonds. Valence is enforced. Heavy atoms are explicitly represented by

vertices but hydrogen atoms are implicit; i.e., any heavy atom with unfilled valence is assumed to be

bonded to hydrogen atoms but these are not represented in the data structure. Our genetic graph software

evolves the population using crossover only; i.e.., mutation and reproduction are not implemented.

The initial population is generated by choosing a random number of atoms between half and twice the

size of the target molecule. Atomic elements are randomly chosen from the elements present in the

target. Bonds are then added at random to construct a spanning tree; i.e., at this point all atoms are

connected into a single molecule. Then a random number of additional bonds are added to create cycles.

This number is chosen to be between half and twice the number of cycles in the target molecule. The

number of cycles is always bonds - atoms + 1.

For this work, tournament selection was used to choose parents in a steady state genetic system.

Tournament selection means that parents are chosen by comparing two randomly chosen individuals and

taking the best. Steady state means that new individuals (children) replace poor individuals in the

population rather than creating a new generation. The poor individuals are also chosen by tournament,

but the worst individual is selected for replacement. By convention, after population-size individuals

have been replaced, we say that one generation is complete. The implementation follows this procedure:

1. Generate a random population of molecules

2. Repeat many times, gathering data periodically:

1. Select two molecules from the population at random. Call the better molecule father.

2. Select two molecules from the population at random. Call the better molecule mother.

3. Make a copy of father and rip it into two parts at random.

4. Make a copy of mother and rip it into two parts at random.

5. Combine one part of the copy-of-father and one part of the copy-of-mother into a molecule
called son.



6. Combinethe other part of the copy-of-father and the other part of the copy-of-mother into a

molecule called daughter.

7. Choose two molecules from the population at random. Replace the worst one with son.

8. Choose two molecules from the population at random. Replace the worst one with daughter.

The most difficult portion of implementing genetic graphs is the crossover operator described above as

"ripping" molecules into two parts and combining parts from each parent-molecule. Crossover is

accomplished by the following procedure:

l°

2.

.

Create copies of each parent.

Randomly cut each copy into two parts by selecting a random edge-cut-set and removing the edges

in the cut set from each copy. An edge-cut-set is a set of edges that, when removed, causes a graph

to break into two disconnected subgraphs. Th_ cut set is generated by the following procedure:

1. Choose an edge at random. |

2. Find the shortest trail between the verti_s of the edge. A trail is an ordered list of edges,
each of which shares a vertex with each'neighboring edge. The first and last edges connect

the two vertices of the original randonaly chosen edge.

3. Select a random edge from the trail, remove it from the molecule, and place it in the cut set.
4. Go to 2 until a cut set is found.

Combine one part of the father's copy with one part of the mother's copy at random by the

following procedure:

1. Select a random cut edge (an edge in either cut set). Call this edge?s vertex in the part to be
mated v 1.

2. If any compatible (same bond type) cut edge in the other part-parent-copy exists, choose one

at random. Call this edge?s vertex in the other part-parent-copy v2. Connect vl and v2 with a

compatible edge.

3. If no comparable cut edge was found, select a random cut edge in the other part-parent-copy

and connect the appropriate vertices with a random edge that satisfies valence.

4. If no cut edge is left in the other part-parent-copy, flip a virtual coin. If heads, connect v 1 to

a random vertex in the other part-parent-copy.

5. Go to 1 until all cut edges have been processed exactly once.

This approach can open and close rings using crossover alone and can even generate cages and higher

dimensional graph structures as long as there are rings in the population. Unfortunately, if there are no

rings in the population none can be generated. Also, once the population consists entirely of

two-vertex-graphs, no graphs with more than two vertices can be generated. Nonetheless, this approach

is by far the most general of those we examined or found in the literature. In particular, unlike [Nachbar

98] no special-purpose ring opening and closing operators are necessary.

The resources required for genetic software to find a solution is a function of the size of the search

space, among other factors. The space of all possible graphs is combinatorial and enormous. For

molecular design this space can be radically reduced by enforcing valence limits for each atom. Thus, a

carbon atom with one double and two single bonds will not be allowed to add another bond. Also,

avoiding explicit representation of hydrogen atoms substantially reduces the size of the graph and

therefore the search space.

Fitness function: all-pairs-shortest-path similarity



The key to any genetic software solution is a good fitness function -- in this case a function that can

determine if one molecule is better than another. This function must be very robust since the randomly

generated initial molecules rarely make much chemical sense. Also, for our initial studies we wanted a

fitness function that only required the graph of a molecule, not the xyz coordinates of each atom. This

simplifies initial studies and avoids the necessity of minimizing candidate molecules, a CPU intensive

step. The all-atoms-pairs-shortest-path similarity test chosen [Carhart 85] is a robust graph-only fitness

function. Each atom is given an extended type consisting of the atomic number and the number of

single, double, and triple bonds the atom participates in. Then the shortest trail between each pair of

atoms is found. A set is constructed with one element for each atom pair at each path length plus

duplicates when there is more than one shortest path (this happens going around rings). The fitness of

each candidate molecule is the distance between its set and the set of a target molecule.

The d_stance measure used is the Tanimoto Coefficient. This is the size of a-intersection-b divided by

the siz_ of a-union-b; where a is the candidate?s set and b is the target?s set. Two elements are

consic_ered identical for the purpose of the intersection and union operations if the atoms have the same
extended type and the distance between them is identical. This measure always returns a number

between 0 and 1. Historically, we have preferred fitness functions that return lower numbers for fitter
individuals, so we subtract the Tanimoto Coefficient from one.

The targets for our initial study were butane, benzene, cubane, purine, diazepam, morphine and

cholesterol. The fitness function can not only find similar molecules, which is useful in drug design, but

also can lead evolution to the exact molecule used as a target. This proves that the algorithm can reach

particular kinds of molecules and the number of generations to find the target provides a quantitative

measure of performance. Unfortunately, all-pairs-shortest-path is an O(n 3) algorithm.

Implementation

Genetic graphs is implemented in Java. Java was chosen since it is similar to C++ (a language known to

the authors), is becoming quite popular so many useful libraries are available, its garbage collection

vastly simplifies memory management, and Java?s bug-reducing features substantially reduce

debugging time and produce more robust code. A significant run-time penalty is paid for these

advantages. With luck, future improvements in Java development and run-time environments will

reduce the performance penalty. All production runs were executed on SGI workstations at the NAS
Division of NASA Ames Research Center.

Test environment

By hypothesis, our genetic graphs algorithm can find any possible molecule. To partially test this

hypothesis, we ran the program using several target molecules:

1. Butane -- for a simple linear molecule.

2. Benzene -- for a simple molecule with a ring.

3. Cubane -- for a cage molecule.

4. Purine -- for fused rings and heteroatoms.

5. Diazepam -- since this was used in [Carhart 85].

6. Morphine -- for a complex drug molecule and because Dr. Wipke's group has worked on

morphine analog design for many years.

7. Cholesterol -- for a non-drug molecule.



Sincethealgorithmis stochastic,twentyrunswereconductedfor eachtargetmolecule.Thenumberof
generationsandpopulationsizewasvariedin anattemptto haveenoughsuccessfulruns(at least11)to
calculatethemediantime to find thetarget.Oncethetargetis foundtherunstops.Runsalsostopaftera
fixed, maximumnumberof generations.A few of the best individuals were saved to see if the software

produced molecules similar to the target. These may be useful for drug design.

Results

20 runs for

each molecule

Benzene

(H6C 6)

Cubane (H8C8) I

Purine

(H4C5N 4)

Population
size

200

100

'100

Median

generations to

find target

39.5

Minimum

generations to find

target

46.5]

245

d3

19

!Number of

runs that failed

Ito find target

8

0

4

Maximum

generations

I

1000

1000

1000

Median, rather than mean, generations to find the target was chosen because the data varied widely and

many runs did not complete. Butane was usually found in the initial random population so data were not

taken. At the time of writing, there was not sufficient data for diazepam, morphine, or cholesterol to

calculate the median for twenty runs. With a population of 100, the benzene runs did not find the target

often enough to calculate the median so the larger population size was used. Diazepam has been found

once in generation 256 with a population of 200 out of nine runs that terminate in at most 1000

generations. Also, during testing leading up to the production runs morphine was found in one run at

generation 208 with a population of 1000.

A number of other measures were taken. These will be presented in a future paper when data for all the

target molecules is available.

Discussion

The genetic graphs algorithm can clearly find small molecules given an appropriate fitness function, and

can find more complex molecules although significant time is required. The variability of runs is

remarkable. Note that eight runs failed to find benzene in 1000 generations, but one run found benzene

in only two generations. It?s also interesting to note that cubane was always found although the median

time to discovery was somewhat greater than for benzene; and the cubane run used a smaller population.

Finally, note the much larger median time to success for purine. Apparently the addition of nitrogen and

the fused ring made finding the target significantly more difficult.

Performance analysis demonstrates what might be expected - the O(n 3) fitness function takes most of the

CPU time. A faster fitness function would substantially speed calculations. Genetic software lore

suggests that the fitness function is exceptionally important [Kinnear 94]. Our results bear this out.

Fortunately, the algorithm is embarrassingly parallel since many runs are required. Also, there is



significantpotentialfor parallelismwithin runssincefitnessfunctionexecutiononeachindividual is
completelyindependent.Furthermore,thealgorithmcanbeeasilyrestartedandcanaffordto losesome
runs.Thus,geneticgraphsis agoodcandidatefor cycle-scavengingbatchsystemssuchasCondor
[Litzkow 88]. Large genetic graph production runs can therefor use wasted workstation and PC cycles at

facilities with large numbers of these machines.

Future work

The performance of the software clearly needs improvement. Not surprisingly, most of the time appears

to be spent in the O(n 3) fitness function. We have identified coding changes that should improve

performance substantially and modifications to the fitness function that should provide much larger

benefits by degrading toe quality of the similarity test for most fitness function evaluations.
_t

Although finding targetJmolecules is a useful measure of the algorithm, we already know the target

molecule. The real puri.7ose of the similarity fitness function is to find molecules similar but not identical

to the target. In partictalar, the ideal result is a wide variety of molecules dissimilar to each other but

relatively similar to the target molecule. This provides a diverse set of candidate molecules for drug

development, a process that takes millions of dollars and years to complete. In the ideal case, one or

more candidates will have the beneficial properties of the target without negative side effects.

Preliminary analysis of collections of the best individuals from each generation suggests that these

collections are quite diverse and share some of the properties of the target molecule. These data are not

yet ready for publication.

Many fitness functions of interest require molecular conformation; i.e., xyz coordinates for each atom.

For example, designing a molecule to fit in a protein receptor to inhibit the activity of a disease

organism. The new and fairly effective AIDS drugs are an example of this approach. To design a fitness

function evolving molecular fit, the very bizarre molecules often created by crossover must be

minimized quickly. Most minimizers available today will not work with without a "reasonable" start

point. We are searching the literature for algorithms to minimize very "bad" molecules.

Circuit design is another field for which genetic graphs should, in principle, be well suited. Genetic

algorithms (using variable length strings) [Lohn 98] and genetic programming [Koza 97] have been used

to design analog circuits. In the genetic programming case, a tree language to generate analog circuits

compatible with the SPICE (Simulation Program with Integrated Circuit Emphasis) [Quarles 94]

simulator was constructed and a 64 node (80MHz per node) parallel supercomputer was used to design

the circuits. The system designed a lowpass filter, a crossover filter, a four-way source identification

circuit, a cube root circuit, a time-optimal controller circuit, a 100 dB amplifier, a temperature-sensing

circuit, and a voltage reference source circuit. Thus, genetic programming can design graph-structured

systems. However, we have found it extremely difficult to create a tree language that can generate any

possible graph and support crossover cleanly. Therefore, it may be advantageous to directly evolve

graphs rather than evolved trees that generate graphs.

Summary

Algorithms and software to evolve graphs using genetic techniques were developed and applied to drug

design using a molecular similarity based fitness function. Early data suggest that the software can

indeed discover a variety of small molecules. Significant additional work will be required to



demonstratethatrepresentingmoleculesasgraphsandusinggeneticsoftwaretechniquesis of major
benefit in moleculardesign.

Acknowledgments

Thanks to Rich McClellan for providing the mol file reading and atomic element code. Thanks to Creon

Levit, Subash Saini, and Meyya Meyyapan of NASA Ames for their support. Thanks to Creon Levit and

Bonnie Klein for reviewing this paper. This work was funded by NASA Ames contract NAS 2-14303.

References

[Baeck 97] Thomas Baeck, Ulrich Hamme,!, and Hans-Paul Schwefel, "Evolutionary coml_utation:
comments on the history and current state, IEEE Transactions on Evolutionary Computation, volume I,

number 1, pages 3-17, April 1997.

[Carhart 85] Raymond Carhart, Dennis H. Smith, and R. Venkataraghavan, "Atom pairs_as molecular

features in structure-activity studies: definition and application, "Journal of Chemical Information and

Computer Science, 23, pages 64-73, 1985.

[Holland 75] John H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan

Press, 1975.

[Kinnear 94] Kenneth E. Kinnear, Jr., "A perspective on the work in this book," Advances in Genetic

Programming, edited by Kenneth E. Kinnear, Jr., MIT Press, Cambridge, Massachusetts, pages 3-20,
1994.

[Litzkow 88] M. Litzkow, M. Livny, and M. W. Mutka, "Condor - a hunter of idle workstations,"

Proceedings of the 8th International Conference of Distributed Computing Systems, pp. 104-111,

June 1988. See http://www.cs.wisc.edu/condor/.

[Lohn 98] Jason D. Lohn and Silvano P. Colombano, " Automated analog circuit synthesis using a linear

representation," Second International Conference on Evolvable Systems: From Biology to Hardware,

Springer-Verlag, Sept.23-25, 1998. (to appear)

[Quarles 94] T. Quarles, A. R. Newton, D. O. Pederson, and A. Sangiovanni-Vincentelli, SPICE 3

Version 3F5 User's Manual, Department of Electrical Engineering and Computer Science, University of

California at Berkeley, CA, March 1994.

[Koza 92] John R. Koza, Genetic Programming: on the Programming of Computers by Means of
Natural Selection, MIT Press, Massachusetts, 1992.

[Koza 97] John R. Koza, Forrest H. Bennett III, David Andre, Martin A. Keane and Frank Dunlap,

"Automated synthesis of analog electrical circuits by means of genetic programming," IEEE

Transactions on Evolutionary Computation, volume 1, number 2, pages 109-128, July 1997.

[Xiao 97] Jiang Xiao, Zbigniew Michalewicz, Lixin Zhang, and Krzysztof Trojanowski, "Adaptive

evolutionary planner/navigator or mobile robots," IEEE Transactions on Evolutionary Computation,



volume 1, number 1, pages 18-28, April 1997.


